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SUMMARY

Radiator surfaces on high temperature space power systems such as the

SP-100 space nuclear power system must maintain a high emittance level in

order to reject waste heat effectively. One of the primary materials under

consideration for the radiators is carbon-carbon composite. Since carbon is

susceptible to attack by atomic oxygen in the low Earth orbital environment,

it is important to determine the durability of carbon composites in this

environment as well as the effect atomic oxygen has on the thermal emittance

of the surface if it is to be considered for use as a radiator. Results

indicate that the thermal emittance of carbon-carbon composite (as low as

0.42) can be enhanced by exposure to a directed beam of atomic oxygen to

levels above 0.85 at 800 K. This emittance enhancement is due to a change in

the surface morphology as a result of oxidation. High aspect ratio cones are

formed on the surface which allow more efficient trapping of incident radia-

tion. Erosion of the surface due to oxidation is similar to that for carbon;

so that at altitudes less than N600 km, thickness loss of the radiator could

be significant (as much as 0.i cm/year). A protective coating or oxidation

barrier forming additive may be needed to prevent atomic oxygen attack after

the initial high emittance surface is formed. Textured surfaces can be formed

in ground based facilities or possibly in space if emittance is not sensitive

to the orientation of the atomic oxygen arrival that forms the texture.

INTRODUCTION

Background

The weight of high temperature radiators for space nuclear power systems

such as the SP-100 power system can represent up to 20 percent of the power

system mass (fig. i). Minimization of such a power system weight is thus

greatly dependent upon the radiator design and performance. There are two

techniques that can be used to reduce the weight of the radiator. One

technique is to use a less dense material to construct the radiator. Table I

contains a list of some typical radiator materials and their densities. The

most attractive material is carbon-carbon composite with an average density of

approximately 1.5 to 2.0 g/cm 3 which is less dense than typical refractory

metal or aluminum radiator surfaces and has a high thermal conductivity.



Carbon-carbon composite materials are also stable at the operating temperature

range expected for radiators for thermoelectric conversion systems

(700 to 900 K) and for Stirling engine systems (525 to 650 K).

The second technique to reduce weight of the radiator is to improve its

ability to transport heat which would result in a lower surface area require-

ment. This is accomplished by improving the thermal emittance of the surface

at the operating temperature. Initially, the thermal emittance of typical

metal radiators at an operating temperature of 800 K range from 0.04 for

copper to 0.27 for titanium (ref. i). Carbon-carbon composite thermal

emittances at this temperature are substantially higher typically ranging from

0.46 to 0.77 depending on the manufacturing process. The desired thermal

emittance for radiators for SP-100 is at least 0.85. There has been much work

in the thermal emittance enhancement of metal radiator surfaces in an attempt

to reach this level that have been successful (refs. 1 to 3). It would be

similarly desirable to enhance the thermal emittance of carbon-carbon

composite radiator surfaces to the 0.85 level to take advantage of the low

density of this material and minimize the radiator surface area at the same
time.

In low Earth orbit, atomic oxygen is the most predominant species from

altitudes of approximately 180 to 650 km (ref. 4). It is produced by the

photodissociation of molecular oxygen by photons of 243 nm wavelength from the

sun (ref. 5). As a spacecraft passes through the atmosphere at these

altitudes it impacts the atomic oxygen at energies between 4 and 5 eV. Atomic

oxygen is a highly reactive species, and at these energies can break chemical

bonds and react with many polymeric materials and some metals (ref. 4).

Carbon has an erosion yield of approximately 1.2x10 -24 cm 3 per oxygen atom

arriving at the surface. This would result in a thickness loss of roughly

50 _ at an altitude of N400 km over a 1-year period. The desired life of a

spacecraft radiator is generally about 15 years.

Emittance Enhancement of Carbon-Carbon Composites

For a diffusely reflecting surface, the hemispherical spectral emittance

is in general equal to the absorptance at the same wavelength (ref. 6).

Therefore, making the surface a better absorber at selected wavelengths would

improve the emittance. If the roughness of a surface is greater than the

wavelength of the radiation, multiple reflections on the surface will occur

which results in a higher emittance level (ref. 6). Roughening of metal

surfaces has been found to improve their emittance (refs. 1 to 3). It would

be most desirable to roughen a C-C composite surface so that there would be

finely spaced high aspect ratio cones on the surface to emit radiation at high

temperatures. Application of paints to the surface would also provide

emittance enhancement, however, adherence of the coating would be a concern at

high temperature. By texturing the radiator surface, the emittance is

enhanced by the surface morphology of the radiator, and since it is a part of

the bulk material, adherence is not a great concern.

In low Earth orbit, most materials exposed to ram oriented atomic oxygen

develop a surface texture (ref. 7). Carbon develops a very fine conelike

structure on the surface upon exposure. Directed arrival of atomic oxygen

could be used to produce a texture on the surface that would enhance the

thermal emittance.



This paper discusses use of a directed atomic oxygen beam to enhance the

thermal emittance of carbon-carbon composites, and the surface loss resulting

from exposure of these composites to atomic oxygen.

EXPERIMENTAL APPARATUS AND PROCEDURE

Carbon-Carbon Composites

Carbon-carbon composites from five different manufacturers were used for

evaluation. Generally, these were comprised of pan or pitch based carbon

fibers woven into a cloth, then impregnated with phenolic resin, formed under

heat and pressure, carbonized, densified with pitch and graphitized. Two-

dimensional weave carbon-carbon composites were supplied by Rohr Industries,

Kaiser Aerotech, and Rocketdyne. In addition to the two-dimensional C-C

composite (C773-I), Rocketdyne supplied a harness weave C-C composite with

carbon chemically vapor deposited on the surface (Panel-8); two-dimensional

weave C-C composite with an SAIC-2A (Si, B, and Zr) oxidation inhibitor

(C741C); and a two-dimensional weave C-C composite with 2.9 at % tantalum as

an oxidation inhibitor (C536B). Fiber Materials Inc. supplied a four-

dimensional weave C-C composite and a composite made with isostatically

pressed chopped fibers. General Electric supplied a three-dimensional C-C

composite with silicon carbide on the surface formed by deposited silicon that

was flame melted into the composite. Pyrolytic graphite manufactured by Union

Carbide was included for comparison and as a flux calibration for the atomic

oxygen beam. Samples were weighed on a Sartorius balance after dehydrating in

vacuum until no mass loss was observed in order to minimize errors in the mass

loss measurement due to absorbed water. This generally required >48 hr of

vacuum dehydration. Measurements of mass were repeated after each atomic

oxygen exposure within 5 min of removal from vacuum.

Atomic Oxygen Exposure Source

Directed atomic oxygen exposure was performed with an oxygen ion source

(end Hall gridless source) from Commonwealth Scientific. Samples were located

25 cm downstream of the source anode face on a water cooled sample holder

where they were exposed to a 90 eV directed beam of a mixture of O ÷ and O ÷.
2

Pressure in the vacuum chamber was 10 -4 torr during source operation and

10 -6 torr background with the source off. A water cooled shield between the

sample holder and the source was used to reduce the amount of heat radiating

on the samples from the cathode filament and to prevent any filament material

from depositing on the samples. A more complete description of the source is

given in reference 8.

Emittance Measurement

The spectral hemispherical emittance was determined from two instruments.

A Perkin Elmer Lambda-9 UV-VIS-NIR spectrophotometer was used to measure the

spectral hemispherical reflectance over wavelength ranges of 250 to 2500 nm

and the Hohlraum Reflectometer was used over the 1500 to 15 000 nm wavelength

range. By overlapping the results from the two, the reflectance as a function

of wavelength was obtained for each sample. Since the samples are not

transmissive, the spectral hemispherical emittance which is equivalent to the



spectral hemispherical absorptance for these samples could be obtained by

subtracting the reflectance values at each wavelength from unity. The total

hemispherical emittance at each temperature was obtained by integrating the

emittance versus wavelength curve with respect to the blackbody curve at the

temperature of interest by using the equation below (ref. 6).

where

_b

T
A

emittance at a wavelength

blackbody emittance at a wavelength

Stefan Boltzmann constant

temperature of interest

The hohlraum reflectometer and the integration technique are discussed in more

detail in reference 3.

RESULTS AND DISCUSSION

The carbon-carbon composites were exposed in two separate batches to the

directed atomic oxygen beam due to the available space on the sample holder.

Samples were removed from the vacuum chamber for emittance and mass measure-

ments. Figure 2 contains the results from these exposures on the total

thermal emittance at 500 and 800 K for both batches of radiator surfaces. All

plots show an increase or no change in emittance with exposure time (which

is directly proportional to the total amount of atomic oxygen arriving at the

surface). The arrival rate in this case is assumed to be constant. The

equivalent atomic oxygen fluence is calculated based on the loss rate of the

pyrolytic graphite that was used as a control in all exposures and the erosion

yield of carbon in space (l.2x10 -24 cm3/atom) (ref. 8). One interesting thing

to note is that no matter what the initial composite total thermal emittance

is, all appear to approach approximately the same end value after a fluence of

approximately 4x102°atoms/cm 2. At 800 K this value is between 0.85 and 0.90

which is higher than the desired value for radiator thermal emittance for

space missions. The value at 500 K is slightly smaller. The three-

dimensional carbon-carbon composites in general started out w_th the highest

values of emittance, but after exposure to directed atomic oxygen, reach the

same limiting emittance values as the two-dimensional weave composites. Weave

pattern appears to play a minor role in thermal emittance once the surface has

developed a full texture due to atomic oxygen exposure. Figure 3 illustrates

the alteration in surface morphology for each composite upon exposure to

atomic oxygen. Scanning electron photomicrographs show development of a cone

structure on all surfaces of between 3 and 5 _ in height except for the

General Electric three-dimensional C-C composite which had SiC on the surface.

This sample did not show the characteristic texture on the surface and

appeared to develop a protective coating. Etch pits occur where the coating

is not completely covering the surface. The Rocketdyne samples containing the

oxidation inhibitor did not appear to form a protective covering on the

surface although the braid pattern overall on these samples is more visible

after exposure (fig. 4). These samples also appeared to have slightly smaller

4



cone heights overall than samples which did not contain any inhibitor. The
amountof oxidation inhibitor in these samples was very small (<3 at % ).
Figure 5 contains the total thermal emittance versus temperature plots for
each of the composites that were exposed in order to provide a better feel for
the total emittance of a radiator composedof this composite over a range of
operating temperatures. In general, atomic oxygen exposure of a small amount

produced the greatest effect on high temperature thermal emittance which would

make sense since high temperature is the shortest wavelength radiation and

this would be affected more easily with a small amount of texture. As cone

height increases, the thermal emittance at lower operating temperatures also

improves. The General Electric C-C composite is the only one which showed an

almost negligible change in emittance with exposure.

Figure 6 contains the mass loss for each composite as a function of

equivalent atomic oxygen fluence. All of the composites, including those with

oxidation inhibitors exhibited approximately the same mass loss rate. This

was even true for the General Electric C-C composite which appeared to develop

an oxidation resistant coating on the surface. If such a coating is develop-

ing, the mass loss rate should decline with exposure. If the coating is not

protecting, the surface should develop a texture similar to that of the other

composites. The mass loss rate can be an important issue to consider depend-

ing on the altitude at which the spacecraft will operate. Figure 7 illus-

trates the thickness loss of C-C that can be expected in 1-year at various

altitudes. If operation is above _700 km in altitude, a 15-year exposure

should result in the removal of <II # from the surface. For most radiators,

this would be an insignificant loss. At lower altitudes, the loss can become

significant. At lower altitudes, an atomic oxygen resistant coating or self

developing barrier is needed in order to prevent further removal of C-C once

the radiator is textured. For higher altitude applications and for radiators

that develop their own atomic oxygen resistant barrier upon exposure, it may

be possible to orient the radiator into the ram atomic oxygen in low Earth

orbit and allow the environment to texture the radiator prior to proceeding to

the operating altitude. Orientation in this case may be critical and more

difficult to achieve than texturing in a ground based system. A textured

surface subjected to a sweeping atomic oxygen arrival may remove the texture

thereby reducing the thermal emittance. Figure 8 illustrates the amount of

time in orbit at various altitudes needed to texture a ram oriented flat

surface.

CONCLUSIONS

Exposure to a directed beam of atomic oxygen alters the surface

morphology of a carbon-carbon composite surface such that it develops high

aspect ratio finely spaced cones on the surface that improves the ability of

the surface to emit radiation. Emittance in general has been shown to improve

by texturing to almost a factor of two for some composites. Values of

emittance at 800 K for textured composites is greater than 0.85 which is the

desired emittance for most space based radiator systems. These values are

achieved after exposure to a fluence of N4xl02° atoms/cm 2. Mass loss for all

composites is similar to that for carbon. In low Earth orbit, thickness loss

may be significant at altitudes <700 km, therefore a protective coating or

surface which develops a protective barrier on exposure may be needed for

these applications. Textured high emittance surfaces can be formed by ground

based exposure to atomic oxygen or possible exposure in space at low



altitudes. The latter maynot be as practical if emittance is sensitive to
the orientation of the atomic oxygen arriving on the surface.
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Table I. - A COMPARISON OF DENSITIES OF

TYPICAL RADIATOR MATERIALS

Material Density,

g/cm 3

Copper 8.9

Niobium - 1 percent 8.6

Zirconium

304 Stainless steel 8.0

Titanium 4.5

Titanium - 6 percent

Aluminum - 4 percent 4.5

Vanadium

Aluminum alloys 2.8

Carbon-Carbon composite 1.5 to 2.0

(Density values for metals obtained

from: Perry, R.H.; and Chilton, C.H.,

eds., Chemical Engineer's Handbook,

5th Ed., McGraw Hill, Co. 1973.)

(Values for C-C Composite obtained

from C-C composite suppliers)
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